
BAB 3 PERANCANGAN DAN IMPLEMENTASI SISTEM

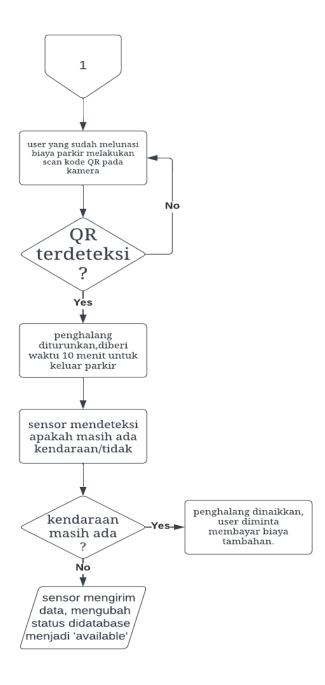
3.1 Perancangan dan Implementasi Sistem

Sebelum masuk *slot* parkir, *user* akan melakukan *scan* kode *QR* pada kamera yang disediakan. Setelah berhasil *scan*, akan tercatat waktu kedatangan sebagai waktu *check-in*, dan penghalan akan dinaikkan. Sensor pada *slot* parkir akan mendeteksi adanya kendaraan dan mengirimkan ke *database* status *slot* tersebut menjadi *'full'*. Saat akan keluar, *user* yang sudah melunasi biaya parkir akan mendapat kode *QR* kembali untuk di-*scan* lagi. Jika sudah melakukan *scan* kembali, *user* dapat keluar pakir.

Gambar 3.1 Arsitektur sistem

Gambar 3.2 Rancangan Perangkat Keras Sistem

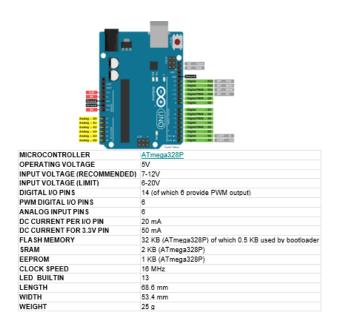
3.1.1 Proses Masuk Parkir


Saat parkir, user melakukan *scan* kode *QR* pada kamera yang disediakan. Jika kode *QR* terdeteksi, akan tercatat waktu kedatangan sebagai waktu *check-in* di *database* dan dapat dilihat pada aplikasi. Setelah tercatat waktu *check-in*, penghalang akan dinaikkan. Sensor ultrasonik mendeteksi adanya kendaraan dan mengubah status *slot* parkir pada *database* menajdi *'full'*.

Gambar 3.3 Diagram alir proses parkir

3.1.2 Proses Keluar Parkir

Saat akan keluar parkir, *user* yang sudah melunasi biaya parkir melakukan *scan* kode *QR* lagi. Setelah *scan* kode *QR*, penghalang akan diturunkkan, dan *user* dapet keluar parkir. *User* akan diberi waktu 10 menit untuk keluar parkir. Sensor pada *slot* parkir akan mendeteksi kendaraan sudah keluar atau belum, jika masih terdeteksi kendaraan penghalang akan dinaikkan kembali, sehingga *user* dikenakkan biaya tambahan. Jika kendaraan sudah keluar, sensor pada *slot* parkir akan mengirim data ke database dan mengubah status *slot* parkir menjadi 'available'.



Gambar 3.4 Diagram alir proses keluar parkir

3.1.3 Perancangan Perangkat Keras

1. Arduino Uno

Mikrokontroler berbasis *Atmega28* yang memiliki 14 pin digital input/output, 6 analog input, sebuah resonator keramik 16MHz, koneksi USB, colokan power *input, ICSP header*, dan sebuah tombol *reset*. Digunakan untuk mengontrol berbagai komponen elektronik. *Arduino* digunakan sebagai komponen utama yang menghubungkan berbagai sensor dan perangkat lainnya yang dibutuhkan.

Gambar 3.5 Arduino Uno dan datasheet Arduino Uno

2. *ESP32-CAM*

Mikrokontroler yang memiliki fasilitas tambahan berupa *bluetooth*, *wifi*, kamera. Digunakan untuk *scan* kode *QR* pada *slot* parkir dan akan mencatat waktu saat *user* melakukan *scan* sebagai waktu *check-in*. karena *ESP32-CAM* memiliki modul *wi-fi*, *ESP32-CAM* juga digunakan untuk mengirimkan data dari sensorsensor yang digunakan pada rancangan sistem.

DIMENSIONS	40.5mm x27mm x4.5mm
VEIGHT	G.W 20g
BATTERY	Exclude
PACKAGE	DIP-16
SPI FLASH	Default 32Mbit
RAM	520 KB SRAM +4M PSRAM
BLUETOOTH	Bluetooth 4.2 BR/EDR and BLE standards
VI-FI	802.11 b/g/n/
SUPPORT INTERFACE	UART, SPI, I2C, PWM
SUPPORT TF CARD	Maximum support 4G
O PORT	9
JART BAUD RATE	Default 115200 bps
MAGE OUTPUT FORMAT	JPEG(OV2640 support only),BMP,GRAYSCALE

Gambar 3.6 ESP32-CAM dan datasheet ESP32-CAM

3. Motor Servo

Perangkat aktuator putar (motor) yang dirancang dengan sistem kontrol umpan balik *loop* tertutup (servo), sehingga dapat diatur untuk berputar dengan sudut tertentu. Digunakan pada *slot* parkir untuk menaikkan dan menurunkan penghalang.

Servo Database > TowerPro Servos > SG90

TowerPro SG90 - Micro Servo

Basic Information		
Modulation:	Analog	
Torque:	4.8V: 25.0 oz-in (1.80 kg-cm)	
Speed:	4.8V: 0.10 sec/60°	
Weight:	0.32 oz (9.0 g)	
Dimensions:	Length: 0.91 in (23.1 mm) Width: 0.48 in (12.2 mm) Height: 1.14 in (29.0 mm)	
Motor Type:	? (add)	
Gear Type:	? (add)	
Rotation/Support:	Bushing	

Additional Specifications

Rotational Range:	? (add)
Pulse Cycle:	? (add)
Pulse Width:	500-2400 μs
Connector Type:	? (add)

Brand:	Tower pro
Product Number:	? (add)
Suggested Retail:	? (add)
Street Price:	5.99 USD
Compare:	add

User Reviews				
Number of Reviews:	2			
Average Rating:	4.5 / 5.0			

Gambar 3.7 Motor servo dan Datasheet Motor Servo

4. Sensor Ultrasonik

Sensor yang digunakan pada *slot* parkir untuk mendeteksi *slot* tersebut sudah terisi atau kosong. Sensor akan mengirimkan data melalui *ESP32-CAM* yang terhubung dengan *database* dan koneksi internet. Cara kerja sensor ini adalah sensor kana memancarkan gelombang ultrasonik, dimana frekuensi gelombang adalah antara 25-50 kHz. Jika terdapat objek didepan sensor, maka gelombang akan terpantul kembali ke sensor [5].

Working Voltage	DC 5 V
Working Current	15mA
Working Frequency	40Hz
Max Range	4m
Min Range	2cm
MeasuringAngle	15 degree
Trigger Input Signal	10uS TTL pulse
Echo Output Signal	Input TTL lever signal and the range in proportion
Dimension	45*20*15mm

Gambar 3.8 Sensor ultrasonic dan datasheet ultrasonic